首页> 外文OA文献 >Sphere decoding complexity exponent for decoding full rate codes over the quasi-static MIMO channel
【2h】

Sphere decoding complexity exponent for decoding full rate codes over the quasi-static MIMO channel

机译:用于解码全速率码的球形解码复杂度指数   准静态mImO信道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the setting of quasi-static multiple-input multiple-output (MIMO)channels, we consider the high signal-to-noise ratio (SNR) asymptoticcomplexity required by the sphere decoding (SD) algorithm for decoding a largeclass of full rate linear space-time codes. With SD complexity having randomfluctuations induced by the random channel, noise and codeword realizations,the introduced SD complexity exponent manages to concisely describe thecomputational reserves required by the SD algorithm to achieve arbitrarilyclose to optimal decoding performance. Bounds and exact expressions for the SDcomplexity exponent are obtained for the decoding of large families of codeswith arbitrary performance characteristics. For the particular example ofdecoding the recently introduced threaded cyclic division algebra (CDA) basedcodes -- the only currently known explicit designs that are uniformly optimalwith respect to the diversity multiplexing tradeoff (DMT) -- the SD complexityexponent is shown to take a particularly concise form as a non-monotonicfunction of the multiplexing gain. To date, the SD complexity exponent alsodescribes the minimum known complexity of any decoder that can provably achievea gap to maximum likelihood (ML) performance which vanishes in the high SNRlimit.
机译:在准静态多输入多输出(MIMO)通道的设置中,我们考虑了球面解码(SD)算法对大型全速率线性空间进行解码所需的高信噪比(SNR)渐近复杂度时间代码。由于SD复杂度具有由随机信道,噪声和码字实现引起的随机波动,因此引入的SD复杂度指数设法简明地描述SD算法所需的计算储备,以任意接近最佳解码性能。获得SD复杂度指数的界限和精确表达式,以解码具有任意性能特征的大系列代码。对于解码最近引入的基于线程循环分割代数(CDA)的代码的特定示例-就分集复用权衡(DMT)而言,目前唯一已知的均一最优的显式设计-SD复杂度指数显示为特别简洁的形式作为复用增益的非单调函数。迄今为止,SD复杂度指数还描述了任何解码器的最小已知复杂度,该解码器可以证明可实现与最大似然(ML)性能的差距,而该差距在高SNR限制中消失了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号